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Power system dynamics simulation

Transient stability simulators (TS)

Balanced network (per-phase analysis)
Nearly constant frequency (phasors)
Time-step in milliseconds

Less computationally intensive

(in comparison to EMT)

Assessing system stability of
large-scale power grids

Combined TS-EMT
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Small area
or plant

Electromagnetic transient simulators (EMT)

Unbalanced three-phase network
Instantaneous signals

Time-step in microseconds

More computationally intensive

Studying the dynamics of fast-switching
power electronic equipment.

Large-Scale power
_____ system
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Combined TS-EMT (“Hybrid simulation”)

= First proposed by Hefernan et. al. for HYAC-HVDC analysis.
= Further motivation from modeling of FACTS devices.

= ‘Interface’ separate TS and EMT programes.
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IEEE Task Force on Interfacing Techniques for Simulation Tools, “Intertacing techniques tor
transient stability and electromagnetic transients program,” IEEE Transactions on Power

A Systems, vol. 8, pp. 2385-2395, 2009.



Hybrid simulation serial interaction protocol
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TS passes external system equivalent at time t.

EMT commences and runs till next TS time step one EMT step at a time.
EMT passes the detailed system equivalent to TS.

TS computes the solution for the next time step.

TS passes the external system equivalent to EMT.

Note* : The external system equivalent passed to EMT is constant.

Note* : No iterations done between TS and EMT.
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Can possibly have large interface errors leading to divergence when system states are changing
rapidly [1]

[1] S. Abhyankar and A. Flueck, “An implicitly-coupled solution approach for combined
electromechanical and electromagnetic transients simulation,” in Proceedings of the IEEE PES

General Meeting. |EEE, 2012.
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Implicitly coupled solution approach for TSEMT

= Can couple at the solution level rather than at
application level, in other words Solve TS and EMT
equations simultaneously.

= Solve TS and coupled-in-time EMT equations in a single
large system at each TS time step.

= External equivalents and waveform interface form
implicit coupling.

= More details?

— S. Abhyankar and A. Flueck, “An implicitly-coupled solution approach for combined
electromechanical and electromagnetic transients simulation,” in Proceedings of
the IEEE PES General Meeting. IEEE, 2012.

— S. Abhyankar, “Development of an implicitly coupled electromechanical and
electromagnetic transients simulator for power systems,” Ph.D. dissertation,
lllinois Institute of Technology, 2011.



TSEMT interfacing details

Interface buses

External System j

J

= Dependent phasor current source
computed via fourier analysis
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balance equation

YV — gen — Iload + IBDRY

2
Ippryo(t + Atrg) /

=t

A Detailed
System

= Uses fundamental frequency Thevenin
equivalent of the external system

Thevenin voltage source

Thevenin equivalent impedance
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= Thevenin impedance kept constant,
only Thevenin voltage updated at each
TS time step.

= Additional equation for EMT

dibdr'
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Equations for each TS and EMT time
step

dXrs

= F(Xpg, V;
dt ( TS5 TS)
0 = G(Xrs, Vrs, Ipry)
dz .
gMT = fi(zemr, tbdry)
t
dipgr .
Z ? = f2 (ﬂvEMT, Lbdrys Uthev)

Approach : Solve TS and coupled-in-
time EMT equations simultaneously'<
at each TS time step in a single large
system.

Equations solved using Newton’s
method.

Implicitly coupled solution approach

f Xrs(tn+1) — Xrs(En) —

BUS (Ftna) + F(EN) =0 (©)
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ibd‘ry(tn-{-l) o ibdry(tn) —
T R
;*‘“ (f2(tn+1) + f2(tn)) =0 (9
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We use a state-space model for EMT
(hence the differential equations),
can.also use NIS.
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Parallel implementation

= We use a spatial decomposition (i.e. parallel-in-
space) for TS equations and temporal decomposition
(i.e. parallel-in-time) for EMT equations.
— TS system larger than EMT system.
— Solving coupled-in-time EMT equations.
— Generators and loads are incident at nodes.
— Minimize load balancing.
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Parallel-space-time partitioning

Equations assigned to each processor
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Test case details

Detailed

A
I / System A=

* |EEE 118 bus system

e EMT part is a radial portion consisting of 4
buses, 3 transmission lines, load at each
bus.

* Loads modeled as constant impedance
loads.

» .Generators are 6% order models with

N exciter.

Simulation details

TS time step =0.01667 seconds

e EMT time step = 0.00016667 seconds

* Three-phase fault in EMT system
cleared in 0.1 seconds.

e Simulation time-length = 1 second.

* Used ParMetis for partitioning the

* TS system

Machine and code details

 AMD Interlagos NUMA machine

* 4 sockets, 16 cores/socket

* AMD Opteron 6274

. GHz

* Code written in C using PETSC’s
numerical solvers.

e Uses MPI for inter-processor
communication (used by
PETSc’s solvers)

* GNU gcc compiler with —03
optimization




Numerical solution schemes

Solution using Newton’s method with different parallel linear solution strategies

1. Parallel LU solver MUMPS
* Parallel LU factorization based on multifrontal approach.
 P.R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster “A fully asynchronous

multifrontal solver using distributed dynamic scheduling,”
SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 1, pp. 15-41, 2001
2. GMRES with Block-Jacobi preconditioner
 GMRES: Iterative Krylov-subspace based solver for unsymmetrical systems.
 Convergence depends on the eigen spectrum of the linear operator.
 Generally requires a good preconditioner.
* We use a Block-Jacobi preconditioner
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Jacobian on 2 cores Block-Jacobi preconditioner

No communication for building or applying the preconditioner
Can choose the factorization, reordering independently on each

block.
We use LU with Quotient Minimum Degree ordering on each block.
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Software Framework: PETSc

Portable Extensible Toolkit for Scientific Computation
= “Open-source” numerical library for large-scale parallel
computation.
= Portability
— Tightly/loosely coupled architectures
— Unix, Linux, MacOS, Windows
— 32/64 bit, real/complex, single/double/quad precision
— C, C++, Fortran, Python, MATLAB.
— GPGPUs and support for threads
= Extensibility

— ParMetis, SuperLU, SuperLU_Dist, MUMPS, HYPRE,UMFPACK, Sundials,
Elemental, Scalapack, UMFPack, ...

= Toolkit
— Sequential and Parallel vectors.
— Sequential and Parallel matrices.
— lterative linear solvers and preconditioners.
— Parallel nonlinear solvers.
— Parallel timestepping (ODE and DAE) solvers.

= Runtime options!! Great for fast experimentation.
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Summary and Future Work

= Presented a parallel-in-space-and-time decomposition
strategy for solving implicitly-coupled electromechanical
and electromagnetic transients simulation.

= Analyzed the parallel performance with two linear
solvers
— |terative solver GMRES with Block-Jacobi preconditioner
— Parallel LU factorization using MUMPS.

= Preconditioned GMRES found to be more scalable than
MUMPS for different test cases.

= Future work

— Need better EMT equipment models especially fast-switching
devices, algorithm to handle discontinuities within TS time step.

— Investigate other network equivalents for TS and EMT.



